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Remarks

Many of these exercises are adopted from the textbooks (Davis or Munkres). You are suggested

to work more from the textbooks or other relevant books.

1. Let (xn) be a sequence in (X, d) such that d(xn, x) → c ∈ R for a point x ∈ X. Can we

conclude the convergence of (xn)?

2. Given a sequence (xn) and A be the set of points {xn}.

(a) Give an example of (xn) that it converges and A ̸= A.

(b) If A = A, can you conclude anything about the convergence of (xn)? Justify your

conclusion by proof or examples.

3. Formulate a statement about the convergence of a sequence in X × Y (with product

topology) with reference to the convergence of sequences in X and Y .

4. Let (X, d) be a metric space and two sequences in X satisfy xn → x and yn → y. Show

that d(xn, yn) → d(x, y).

5. Let (X, d) be a metric space. Show that if a sequence xn → x then every subsequence

of it converges to x. Show also the converse that if every convergent subsequence of (xn)

converges to x then xn → x. Is it true for general topological spaces.

6. Let X be a first countable space. Show that x ∈ A if and only if there is a sequence (an)

in A converging to x. Moreover, show that f : X → Y is continous at x0 ∈ X if and

only if for all sequence (xn) converging to x0, the sequence f(xn) converges to f(x0).

7. Let Rℓℓ, Rcf and R be the real line with lower limit topology, cofinite topology, and

standard topology respectively. Find examples of sequences that converge in one topology

but not in another.


